
Image processing for gesture

recognition: from theory to practice

Michela Goffredo

University Roma TRE

goffredo@uniroma3.it
2

Image processing

� At this point we have all of the basics at our disposal. We understand the structure
of the library as well as the basic data structures it uses to represent images. We
understand the HighGUI interface and can actually run a program and display our
results on the screen. Now that we understand these primitive methods required
to manipulate image structures, we are ready to learn some more sophisticated
operations.

� We will now move on to higher-level methods that treat the images as images, and

2

� We will now move on to higher-level methods that treat the images as images, and
not just as arrays of colored (or grayscale) values.

� We said that Computer vision is the transformation of data from a still or video
camera into either a decision or a new representation.

� Image processing is part of Computer Vision and aim at transforming the image
so that information can be extracted.

� Processing can be divided into:

� global operator: transforms the whole image

� local operator: transform a region of the image

Noisy images

Images gathered for the real world are not clean and sharp as the synthetic ones.

But they present random variation of brightness or color information.

These discontinuities and local changes are called noise and depends on:

� Sensor

� Local change of light

� Sampling

3

� Sampling

� Quantization

Smoothing

Smoothing is a basic image transformation used for blurring, for noise reduction and
for camera artifacts decreasing.

Blurring is used in pre-processing steps, such as removal of small details from an image
prior to (large) object extraction, and bridging of small gaps in lines or curves.

Different operators cause image smoothing:

4

Different operators cause image smoothing:

� Mean filter

� Median filter

� Gaussian filter

� Bilateral filter

Smoothing

� Mean filter

Each pixel in the output is the mean of all of the pixels in a window around the
corresponding pixel in the input.

3x3 mean filter:

5

The central pixel value of 150 is rather unrepresentative of the surrounding pixels and
is replaced with the mean value: 125. A 3×3 square neighborhood is used here. Larger
neighborhoods will produce more severe smoothing.

Neighbour values:
124,126,127,120,150,12
5,115,119,123

Mean value (rounded):
125

Smoothing

� Median filter

Each pixel in the output is the median of all of the pixels in a window around the
corresponding pixel in the input.

3x3 mean filter:

6

The central pixel value is replaced with the median value 124. The median filter does
not “create” a different value. For this reason it is widely claimed to be 'edge-
preserving' since it theoretically preserves step edges without blurring.

Neighbour values:
124,126,127,120,150,12
5,115,119,123

Median value:
124

Mean vs Median

� Mean value: arithmetic average value of the values:

� Median value: numeric value separating the higher half of a sample from the lower

7

� Median value: numeric value separating the higher half of a sample from the lower
half. It can be found by arranging all the observations from lowest value to highest
value and picking the middle one.

124 126 127 120 150 125 115 119 123

115 119 120 123 124 125 126 127 150

115 120 125 130 135 140 145 150
0

0.5

1

1.5

2

2.5

3

Smoothing

� Gaussian filter

It is achieved by convolving each pixel with a Gaussian window.

8
5 x 5, σ = 1

0.003 0.013 0.022 0.013 0.003

0.013 0.059 0.097 0.059 0.013

0.022 0.097 0.159 0.097 0.022

0.013 0.059 0.097 0.059 0.013

0.003 0.013 0.022 0.013 0.003

Smoothing

Defining the Gaussian kernel means fixing its size and σ.

Look what’s going on by changing the kernel size:

9

Rule of thumb: set filter half-width to about 3σ

Smoothing

How does it work?

Assumptions:

� pixels in a real image should vary slowly over space and thus be correlated
to their neighbors;

� random vary greatly from one pixel to the next (i.e., noise is not spatially

10

� random vary greatly from one pixel to the next (i.e., noise is not spatially
correlated).

Therefore:

� Gaussian smoothing reduces noise while preserving signal.

Smoothing

Let’s have a look at the 1D case:

11

� Unfortunately, this method breaks down near edges, where you do expect pixels to
be uncorrelated with their neighbours. ..

Smoothing

Example of Gaussian filter on a 564x528 image:

12

Smoothing

Differences with the median filter

13

Smoothing

With images having lots of details…

Gaussian

14
3x3 5x5 7x7

Median

Smoothing

� Bilateral filter

It is an edge-preserving and noise reducing smoothing filter.

The intensity value at each pixel in an image is replaced by a weighted average of
intensity values from nearby pixels.

The weights depend not only on Euclidean distance but also on the radiometric

15

The weights depend not only on Euclidean distance but also on the radiometric
differences (differences in the range of color/gray intensity).

We need to set 3 parameters:

� Filter size

� σ1 (spatial-domain standard deviation, like the Gaussian filter)

� σ2 (intensity-domain standard deviation)

Smoothing

� Bilateral filter

16

Smoothing

We need to set 3 parameters:

� Filter size w

� σ1 (spatial-domain standard deviation, like the Gaussian filter)

� σ2 (intensity-domain standard deviation)

Rules of thumb:

17

Rules of thumb:

σ1 = (w/2)*3

σ2 = the larger this parameter is, the broader is the range of intensities that will be
included in the smoothing (and thus the more extreme a discontinuity must be in
order to be preserved). 0.1 is suggested.

Smoothing

And the apple?

18

Smoothing

� OpenCV

19

EXAMPLE

Smoothing

20

Practice 2/1

Write a program which:

� loads the image “noisy.jpg”;

� shows the image on a window;

� apply 4 different smoothing algorithms;

� find a good set of parameters;

shows the results on different windows;

21

� shows the results on different windows;

� saves the best smoothed images

Threshold

� So far we’ve seen how to smooth and clean a noisy image.
� We said that the aim of image processing is getting information from

the image itself.
� A simple and useful image processing method for getting information is

segmenting pixels with respect to their values, i.e. segmenting objects.

The basic global threshold algorithm aims at scanning the image pixel

22

� The basic global threshold algorithm aims at scanning the image pixel
by pixel and labelling each pixel whether the gray level of that pixel is
greater or less than a valueT.

� If the gray level of the pixel is >= T, then it’s set to a maximum value M
(usually 255)

� If the gray level of the pixel is < T, then it’s set to a minimum value m
(usually 0)

Threshold

� See what’s happening by varyingT

23

Threshold

� How can we setT?

Have a look to the histogram of the grey levels…

7

8
x 10

4

24

0 50 100 150 200 250
0

1

2

3

4

5

6

Threshold

� How can we setT?

Alternatively, there’s an approach which automatically set a threshold T for each
pixel by computing a weighted average of a K-by-K region around each pixel location
minus a constant C.

� The adaptive threshold technique is useful when there are strong illumination

25

� The adaptive threshold technique is useful when there are strong illumination
or reflectance gradients that you need to threshold relative to the general intensity
gradient.

Threshold

26

Threshold

� There are several adaptive threshold methods, i.e.:

1. T=mean of K × K pixel neighborhood, subtracted by parameter C.

27

Pixel value = 150
K=3 (3-by-3 window)
C = 5 (parameter)
Mean value: 125
T = 120
The pixel will be set to 255

Threshold

� There are several adaptive threshold methods, i.e.:

2. T=weighted sum (gaussian) of K × K pixel neighborhood, subtracted by parameter
C.

28

Pixel value = 150
K=3 (3-by-3 window)
C = 5 (parameter)
T = 134
The pixel will be set to 255

Double Threshold

� Sometimes pixels belonging to the object of interest are in the range of 2 values.

� In this case, we need 2 thresholds

� Remember Beckham?

29

Thresholds: H(0-20); S (30-150);V(80-255)

Threshold

� OpenCV
Comparison operation between the ith source pixel and the threshold.
The destination pixel may be set to 0, the source pixel, or the max_value.

30

EXAMPLE

Threshold

31

Threshold

� AdaptiveThreshold

32

Methods:

� CV_ADAPTIVE_THRESH_MEAN_C: T=mean of block_size × block_size pixel
neighborhood, subtracted by param1.

� CV_ADAPTIVE_THRESH_GAUSSIAN_C: T=weighted sum (gaussian)
of block_size × block_size pixel neighborhood, subtracted by param1.

Threshold

EXAMPLE

33

InRange

� 2 thresholds
Comparison operation between the ith source pixel is in range between the values
of the ith pixels in the lower and upper images or betweenTWO scalars:

34

� If the value in src is greater than or equal to the value in lower and also less than
the value in upper, then the corresponding value in dst will be set to 1; otherwise,
the value in dst will be set to 0.

Practice 2/2

Write a program which:

� loads the image “th.jpg”;

� transforms the image in gray-levels colorspace;

� changes its size (1/2);

� shows the image on a window;

finds the best threshold(s) for a good segmentation of the flowers

35

� finds the best threshold(s) for a good segmentation of the flowers

� saves the results as “th_binary.jpg”

Try these two thresholds:

Thmin =50

Thmax = 200

Is the binary image you got clean?

Morphology

� After image threshold, we usually have a binary image where white pixels (255)
correspond to the object of interest (+ noise)

3636

� Image processing presents very useful algorithms (called Morphological) which
allow to connect isolated pixels sufficiently close to other and/or deleting
isolated pixels.

� The basic morphological transformations are called dilation and erosion, and they
arise in a wide variety of contexts such as removing noise, isolating individual
elements, and joining disparate elements in an image.

Morphology

� Dilation is a convolution of an image A with a kernel B.

� The kernel can be any shape or size.

� Most often, the kernel is a small solid square or disk

� As the kernel B is scanned over the image, we compute the maximal pixel value
overlapped by B and replace the image pixel under the central point with that
maximal value.

3737

maximal value.

� This causes bright regions within an image to grow → this growth is the origin of
the term “dilation operator”.

Morphology

� Erosion is the converse operation.

� The action of the erosion operator is equivalent to computing a local minimum over
the area of the kernel.

� As the kernel B is scanned over the image, we compute the minimal pixel value
overlapped by B and replace the image pixel under the central point with that
minimal value.

3838

� This causes dark regions within an image to grow -> this growth is the origin of the
term “erosion operator”.

Morphology

Usage:

� In general, whereas dilation expands region A, erosion reduces region A.

� The erode operation is often used to eliminate “speckle” noise in an image. The
idea here is that the speckles are eroded to nothing while larger regions that
contain visually significant content are not affected.

� The dilate operation is often used when attempting to find connected
components

3939

The dilate operation is often used when attempting to find connected
components (i.e., large discrete regions of similar pixel color or intensity). The
utility of dilation arises because in many cases a large region might otherwise be
broken apart into multiple components as a result of noise, shadows, or some other
similar effect. A small dilation will cause such components to “melt” together into
one.

Morphology

� OpenCV

40

Morphology

� In the NULL case, the kernel used is a 3-by-3 kernel.

� But, you can make your own custom morphological kernels using:

41

Morphology

EXAMPLE

42

X X + 10

Y + 10Y

Morphology

EXAMPLE

43

Morphology

EXAMPLE

44

Practice 2/3

Write a program which:

� loads one of the binary image of the previous program (th_binary.jpg);

� shows the image on a window;

� apply “erode” and “dilate” operation for cleaning noise and connecting
the object related to the flower;

� New binary image as “flower_binary.jpg”

45

� New binary image as “flower_binary.jpg”

TIP: use a 3x3 disk kernel and change the number of iterations

So far we’ve learned:

� To smooth the image for reducing noise

� To threshold the image for segmenting the pixels of interest

� To erode the obtained binary image for deleting small objects due to residual noise

� To dilate the image to connect close object

Blob analysis

BUT

We can still have binary images like this one:

So we need a method to label blobs belonging to the same object;

to get measures like area, perimeter…

46

� OpenCV doesn’t have any function for connecting and grouping pixels
(blob).

� However, since lots of people work with OpenCV, the web is rich of useful
libraries and codes to accomplish tasks like that.

� For example, rickypetit1979 developped CvBlobsLib library, which is an
OpenCV extension to find and manage connected components in binary

Blob analysis

OpenCV extension to find and manage connected components in binary
images.

� You can find CvBlobsLib v8.3 in poliformat. Follow the instructions in the
pdf file to add the library to your project.

47

Relevant functions:

� blob type
CBlobResult blobs;

� object that will contain blobs of inputImage
blobs = CBlobResult(image, NULL, 0);

Blob analysis

blobs = CBlobResult(image, NULL, 0);

� get ith blob
currentBlob = blobs.GetBlob(i);

� get blob pixels
TIP: you need to create a black (0) image with white (255) pixels
corresponding to the blob and then scan the obtained binary image getting
white-pixels coordinates ☺

48

Blob analysis

� discard the blobs with less area than 5000 pixels (the criteria to filter can
be any class derived from COperadorBlob)
blobs.Filter(blobs, B_INCLUDE, CBlobGetArea(), B_GREATER,

5000);

blobs.Filter(blobs, B_EXCLUDE, CBlobGetArea(), B_LESS,

5000);

49

� get the blob with biggest perimeter

blobs.GetNthBlob(CBlobGetPerimeter(), 0,

blobWithBiggestPerimeter);

� get the blob with less area

blobs.GetNthBlob(CBlobGetArea(), blobs.GetNumBlobs() - 1,

blobWithLessArea);

Blob analysis

� build an output image equal to the input but with 3 channels (to draw the
coloured blobs)

IplImage *outputImage;

outputImage = cvCreateImage(cvSize(inputImage->width,

inputImage->height), IPL_DEPTH_8U, 3);

cvMerge(inputImage, inputImage, inputImage, NULL,

50

cvMerge(inputImage, inputImage, inputImage, NULL,

outputImage);

� plot the selected blobs in a output image

blobWithBiggestPerimeter.FillBlob(outputImage, CV_RGB(255,

0, 0));

blobWithLessArea.FillBlob(outputImage, CV_RGB(0, 255, 0));

1. Add the cvblobslib_OpenCV_v8_3 library to your project and try the
following example: …\cvblobslib_OpenCV_v8_3\testBlobs\main.cpp
(copying and pastying into your project, if you prefer).

� Which intensity value is the background? How can you easily find it?

� Which size does the triangle have?

Practice 2/4

� Which size does the triangle have?

� In A is the position of the second trackbar, change the code so that areas
higher thanA are black colored

51

� Read and show the image “flower_binary.jpg” from practice 2/3

� Apply the blob analysis

� How many object can you label?

Practice 2/5

TIP:

- Use CV_THRESH_BINARY_INV for thresholding the image since
CBlobResult looks for dark objects.

52

Template Matching

� OpenCV

53

cvMatchTemplate matches an actual image patch against an input image by “sliding”
the patch over the input image using one of the matching methods described in this
section.

� image: single 8-bit or floating-point plane or color image (input.)

� templ: patch from a similar image containing the object for which you are searching

� result: single-channel byte or floating-point image of size

images->width – patch_size.x + 1, images->height – patch_size.y + 1

Example 8: Template matching

54

Example 8: Template matching

55

Example 8: Template matching

56

Example 8: Template matching

57

� Load image “erasmusip.jpg”

� Try template matching algorithms with your own templates…

Who do you want to detect? ☺

Practice 2/6

58

The projects…

